
Control structures, fifth lecture

The practice of effects:
from exceptions to effect handlers

Xavier Leroy
2024-02-23

Collège de France, chair of software sciences
xavier.leroy@college-de-france.fr

Exceptions

Exceptions in a functional language

An exception = a value (type exn) that describes an exceptional
condition (error, lack of a meaningful result, . . .).

Expressions:
e ::= cst | x | λx. e | e1 e2

| raise e raising an exception
| try e1 with x→ e2 handling an exception

raise e stops evaluation and branches to the nearest enclosing
try . . . with. This expression returns no value.
(As shown by the type raise : ∀α, exn→ α.)

2

Exceptions in a functional language

An exception = a value (type exn) that describes an exceptional
condition (error, lack of a meaningful result, . . .).

Expressions:
e ::= cst | x | λx. e | e1 e2

| raise e raising an exception
| try e1 with x→ e2 handling an exception

try e1 with x→ e2 evaluates the body e1.
If e1 raises no exception, its value is returned as the value of the
whole try . . . with.
If e1 raises an exception, the value v of the exception is bound to
x and the handler e2 is evaluated.

2

Examples of uses of exceptions

Error reporting (for instance, arithmetic overflow):

let safe_add x y =

let z = x + y in

if (z lxor x) land (z lxor y) < 0 then raise Overflow;

z

let sum_list l =

try

let s = List.fold_left safe_add 0 l in

printf "Sum is %d\n" s

with Overflow ->

printf "Overflow!\n"

3

Examples of uses of exceptions

Early exit from nested recursive calls:

let list_product l =

let exception Zero in

let rec product = function

| [] -> 1

| 0 :: _ -> raise Zero

| n :: l -> n * product l

in

try product l with Zero -> 0

4

Examples of uses of exceptions

Emulating break and continue:

exception Break in

exception Continue in

try

for i = lo to hi do

try

... raise Break ... raise Continue ...

with Continue -> ()

done

with Break -> ()

Exceptions that are raised and handled in the same function
≈ multi-level exit (lecture #1) ≈ forward goto.

5

Reduction semantics

Two head-reduction rules for try. . .with:

try v with x→ e ε→ v

try D[raise v] with x→ e ε→ e{x← v}

Here, D is a context with no try. . .with enclosing the hole:

Reduction contexts:
C ::= [] | C e | v C | raise C | try C with x→ e

Exception propagation contexts:
D ::= [] | D e | v D | raise D

(See later: the semantics of effect handlers here .)

6

Reduction semantics

Consider a program p that is about to raise exception v:

p = C[raise v]

If the raise v is enclosed in a try. . .with, we write p as

p = C′ [try D[raise v] with x→ e]

and we reduce
p→ C′ [e{x← v}]

If the raise v is not enclosed in any try. . .with, program p is
stuck on an uncaught exception.

7

Exception-returning style (ERS)

An alternative to exceptions: include errors in the return values
of functions.

type (’a, ’e) result = V of ’a | E of ’e

let safe_add x y : (int, string) result =

let z = x + y in

if (z lxor x) land (z lxor y) < 0

then E "overflow"

else V z

let rec safe_add_list = function

| [] -> V 0

| x :: l ->

match safe_add_list l with

| V y -> safe_add x y

| E e -> E e 8

The ERS transformation

E(cst) = V cst

E(x) = V x

E(λx. e) = V (λx. E(e))
E(e1 e2) = match E(e1) with E x1 → E x1 | V v1 →

match E(e2) with E x2 → E x2 | V v2 → v1 v2

E(raise e) = match E(e) with E x→ E x | V v → E v

E(try e1 with x→ e2)

= match E(e1) with E x→ E(e2) | V v → V v

The transformation propagates error results “upward”, except for
try. . .with, which handles the error result.

9

Alternative: “double-barreled” CPS

Two continuations: k1 to return a value, k2 to raise an exception.

let safe_add x y k1 k2 =

let z = x + y in

if (z lxor x) land (z lxor y) < 0

then k2 "overflow"

else k1 z

let rec safe_add_list l k1 k2 =

match l with

| [] -> k1 0

| x :: l ->

safe_add_list l (fun v -> safe_add x v k1 k2) k2

10

A double-barreled CPS transformation

C2(cst) = λk1. λk2. k1 cst

C2(x) = λk1. λk2. k1 x

C2(λx. e) = λk1. λk2. k1 (λx. C2(e))

C2(e1 e2) = λk1. λk2. C2(e1) (λv1. C2(e2) (λv2. v1 v2 k1 k2) k2) k2

C2(raise e) = λk1. λk2. C2(e) k2 k2

C2(try e1 with x→ e2)

= λk1. λk2. C2(e1) k1 (λx. C2(e2) k1 k2)

The transformation propagates the error continuation k2

“downward” (towards sub-expressions), except for try. . .with,
which installs a new error continuation.

11

Double-barreled CPS transformation
≈ ERS transformation followed by CPS transformation

For a program of a base type τ :

((τ + exn)→ Res)→ Res (τ → Res)→ (exn→ Res)→ Res

τ

τ + exn

ERS

CPS

CPS2

≈

Same type isomorphism as (A + B)→ C ≈ (A→ C)× (B→ C).

12

Effects and effect handlers

Effects and effect handlers

Algebraic effects: (Plotkin, Power, Pretnar, 2003, 2009)

A theory of the generation, propagation and specification of
effects in programming languages.
(Effects = mutable state, I/O, exceptions, non-determinism, . . .).

(→ Lecture #6)

User-defined effects and effect handlers: (Bauer & Pretnar, 2015)

A powerful control structure inspired by the theory of algebraic
effects.

Combines restartable exceptions with delimited continuations.

13

Catching errors using exceptions

type exn += Conversion_failure of string

let int_of_string s =

match int_of_string_opt s with

| Some n -> n

| None -> raise (Conversion_failure s)

let sum_stringlist lst =

lst |> List.map int_of_string |> List.fold_left (+) 0

let safe_sum_stringlist lst =

match sum_stringlist lst with

| res -> res

| exception Conversion_failure s ->

printf "Bad input: %s\n" s; max_int

14

Fixing errors using effects

type _ eff += Conversion_failure : string -> int eff

let int_of_string s =

match int_of_string_opt s with

| Some n -> n

| None -> perform (Conversion_failure s)

let sum_stringlist lst =

lst |> List.map int_of_string |> List.fold_left (+) 0

let safe_sum_stringlist lst =

match sum_stringlist lst with

| res -> res

| effect Conversion_failure s, k ->

printf "Bad input: %s, replaced with 0\n" s;

continue k 0
15

Example of execution

Without the effect handler: behaves like an uncaught exception.

let n = sum_stringlist ["1"; "xxx"; "2"; "yyy"]

Exception: Stdlib.Effect.Unhandled(Conversion_failure("xxx"))

With the effect handler: errors are caught and fixed.

let n = safe_sum_stringlist ["1"; "xxx"; "2"; "yyy"]

Bad input xxx, replaced with 0

Bad input yyy, replaced with 0

val n : int = 3

(Examples written and run in OCaml 5.1.1 + an experimental syntax match with

effect. To use: opam switch create 5.1.1+effect-syntax .)

16

Effects and continuations

let int_of_string s = ... perform (Conversion_failure s)

let safe_sum_stringlist lst =

match ...

with effect Conversion_failure s, k -> ... continue k 0

When perform raises an effect, its (delimited) continuation is
captured and given to the handler along with the effect value.

The effect handler can either discard this continuation k,
or restart it on a value of the type expected by the context of the
perform (here, int).

Limitation (in OCaml, not in other languages):
the continuation is “one-shot” (linear) and must be restarted or
discarded exactly once.

17

Intuitions in terms of call stacks

Raising an exception = cutting the stack.

18

Intuitions in terms of call stacks

Raising an exception = cutting the stack.

try...with

18

Intuitions in terms of call stacks

Raising an exception = cutting the stack.

try...with

18

Intuitions in terms of call stacks

Raising an exception = cutting the stack.

try...with

raise

18

Intuitions in terms of call stacks

Raising an exception = cutting the stack.

18

Intuitions in terms of call stacks

Naive undelimited continuations = stack copies (to the heap).

19

Intuitions in terms of call stacks

Naive undelimited continuations = stack copies (to the heap).

callcc

19

Intuitions in terms of call stacks

Naive undelimited continuations = stack copies (to the heap).

19

Intuitions in terms of call stacks

Naive undelimited continuations = stack copies (to the heap).

19

Intuitions in terms of call stacks

Naive undelimited continuations = stack copies (to the heap).

throw

19

Intuitions in terms of call stacks

Effect handling = switching between several stacks.

In OCaml: no stack copying→ one-shot continuations.

20

Intuitions in terms of call stacks

Effect handling = switching between several stacks.

match..

In OCaml: no stack copying→ one-shot continuations.

20

Intuitions in terms of call stacks

Effect handling = switching between several stacks.

match..

In OCaml: no stack copying→ one-shot continuations.

20

Intuitions in terms of call stacks

Effect handling = switching between several stacks.

match..

perform

In OCaml: no stack copying→ one-shot continuations.

20

Intuitions in terms of call stacks

Effect handling = switching between several stacks.

match..

In OCaml: no stack copying→ one-shot continuations.

20

Intuitions in terms of call stacks

Effect handling = switching between several stacks.

match..

continue

In OCaml: no stack copying→ one-shot continuations.

20

Deep handlers, shallow handlers

Deep handler:
remains in place when a continuation is restarted;
disappears only when the computation terminates normally.

let n = safe_sum_stringlist ["1"; "xxx"; "2"; "yyy"]

Bad input xxx, replaced with 0

Bad input yyy, replaced with 0

val n : int = 3

Shallow handler:
disappears as soon as an effect is handled.

let n = safe_sum_stringlist ["1"; "xxx"; "2"; "yyy"]

Bad input xxx, replaced with 0

Exception: Stdlib.Effect.Unhandled(Conversion_failure("yyy"))

(In OCaml: match. . .with is “deep”; the Effect.Shallow library
implements the “shallow” semantics.)

21

Control inversion on an iterator

As in lecture #4, we assume given an “internal” iterator such as
the one over binary trees:

type ’a tree = Leaf | Node of ’a tree * ’a * ’a tree

let rec tree_iter (f: ’a -> unit) (t: ’a tree) =

match t with

| Leaf -> ()

| Node(l, x, r) -> tree_iter f l; f x; tree_iter f r

We’d like to implement an “external” iterator on top of
tree_iter:

type ’a enum = Done | More of ’a * (unit -> ’a enum)

val tree_enum : ’a tree -> ’a enum

22

Control inversion on an iterator

let tree_enum (type elt) : elt tree -> elt enum =

let module Inv = struct

type _ eff += Next : elt -> unit eff

let tree_enum (t: elt tree) : elt enum =

match tree_iter (fun x -> perform (Next x)) t with

| () -> Done

| effect Next x, k -> More(x, fun () -> continue k ())

end in

Inv.tree_enum

We use OCaml’s local modules to declare an effect Next that is
local to the function and has the right type to make tree_enum

polymorphic in the type elt of elements.

23

Control inversion on an iterator

let tree_enum (type elt) : elt tree -> elt enum =

let module Inv = struct

type _ eff += Next : elt -> unit eff

let tree_enum (t: elt tree) : elt enum =

match tree_iter (fun x -> perform (Next x)) t with

| () -> Done

| effect Next x, k -> More(x, fun () -> continue k ())

end in

Inv.tree_enum

For each element x of the tree, the effect Next x is performed.
The handler receives x and the continuation k that restarts the
traversal.

23

Control inversion on an iterator

let tree_enum (type elt) : elt tree -> elt enum =

let module Inv = struct

type _ eff += Next : elt -> unit eff

let tree_enum (t: elt tree) : elt enum =

match tree_iter (fun x -> perform (Next x)) t with

| () -> Done

| effect Next x, k -> More(x, fun () -> continue k ())

end in

Inv.tree_enum

When the traversal is over, tree_iter returns (), which is turned
into Done by the effect handler.

23

Control inversion on an iterator

let tree_enum (type elt) : elt tree -> elt enum =

let module Inv = struct

type _ eff += Next : elt -> unit eff

let tree_enum (t: elt tree) : elt enum =

match tree_iter (fun x -> perform (Next x)) t with

| () -> Done

| effect Next x, k -> More(x, fun () -> continue k ())

end in

Inv.tree_enum

Note that the handler changes the type of the computation:
tree_iter ... t has type unit,
match tree_iter ... has type elt enum.

23

Comparing callcc with effect handling

Using callcc: (lecture #4)

callcc (fun k ->

tree_iter

(fun x ->

callcc

(fun k’ ->

k (More(x, k’))))

t;

Done)

Two callcc: one to exit,
one to support restarting.
More(x, ...) is computed
in the iterated function.

Using effect handling:
match

tree_iter

(fun x -> perform (Next x))

t

with

| () -> Done

| effect Next x, k ->

More(x, fun () -> resume k ())

A single perform to exit while
capturing the restart
continuation.
More(x, ...) is computed in
the handler.

24

Control inversion on an iterator

This construction can be generalized to invert any internal
iterator on any collection type:

let enum_of_iter

(type elt) (type collection)

(iter: (elt -> unit) -> collection -> unit)

: collection -> elt enum =

let module Inv = struct

type _ eff += Next : elt -> unit eff

let enum coll =

match iter (fun x -> perform (Next x)) coll with

| () -> Done

| effect Next x, k -> More(x, fun () -> continue k ())

end in Inv.enum

25

Transforming and re-emitting effects

(M. Pretnar, An introduction to algebraic effects and handlers, 2015.)

An effect Print for outputting a string.

type _ eff += Print : string -> unit eff

let print s = perform (Print s)

let abc () = print "a"; print "b"; print "c"

26

Transforming and re-emitting effects

The effect can be handled as a “true” output on the terminal:

let output f =

match f () with

| () -> print_newline()

| effect Print s, k -> print_string s; continue k ()

But we can also collect all outputs in a string:

let collect f =

match f () with

| () -> ""

| effect Print s, k -> s ^ continue k ()

collect abc produces the string "abc".

27

Transforming and re-emitting effects

We can also re-emit the Print effect after processing it,
for instance to reverse the order of outputs:
let reverse f =

match f () with

| () -> ()

| effect Print s, k -> continue k (); print s

or to add a sequence number:
let number f =

begin match f () with

| () -> (fun lineno -> ())

| effect Print s, k ->

(fun lineno ->

print (sprintf "%d:%s\n" lineno s);

continue k () (lineno + 1))

end 1 28

Implementing cooperative threads
with effects and handlers

A library for cooperative threading

The natural interface in “direct style”:

spawn : (unit -> unit) -> unit

Start a new thread.
yield : unit -> unit

Suspend the current thread;
switch to another runnable thread.

terminate : unit -> unit

Stop the current thread forever.

29

Defining the corresponding effects

The three operations are defined trivially as raising effects
(which will be handled by the scheduler).

type _ eff +=

| Spawn : (unit -> unit) -> unit eff

| Yield : unit eff

| Terminate : unit eff

let spawn f = perform (Spawn f)

let yield () = perform Yield

let terminate () = perform Terminate

30

The state of the scheduler

A queue of threads that were suspended by a call to yield, ready
to be restarted.

let runnable : (unit -> unit) Queue.t = Queue.create()

let suspend f = Queue.add f runnable

let restart () =

match Queue.take_opt runnable with

| None -> ()

| Some f -> f ()

31

The scheduler

let rec run (f: unit -> unit) =

match f() with

| () -> restart ()

| effect Terminate, k -> discontinue k; restart ()

| effect Yield, k -> suspend (continue k); restart ()

| effect Spawn f, k -> suspend (continue k); run f

32

The scheduler

let rec run (f: unit -> unit) =

match f() with

| () -> restart ()

| effect Terminate, k -> discontinue k; restart ()

| effect Yield, k -> suspend (continue k); restart ()

| effect Spawn f, k -> suspend (continue k); run f

The current thread terminates normally:
we restart another thread.

32

The scheduler

let rec run (f: unit -> unit) =

match f() with

| () -> restart ()

| effect Terminate, k -> discontinue k; restart ()

| effect Yield, k -> suspend (continue k); restart ()

| effect Spawn f, k -> suspend (continue k); run f

The current thread called terminate:
we “discontinue” (throw away) the continuation k (the thread will
never restart) and we restart another thread.

32

The scheduler

let rec run (f: unit -> unit) =

match f() with

| () -> restart ()

| effect Terminate, k -> discontinue k; restart ()

| effect Yield, k -> suspend (continue k); restart ()

| effect Spawn f, k -> suspend (continue k); run f

The current thread called yield:
we store the continuation k as ready to restart,
and we restart another thread.

32

The scheduler

let rec run (f: unit -> unit) =

match f() with

| () -> restart ()

| effect Terminate, k -> discontinue k; restart ()

| effect Yield, k -> suspend (continue k); restart ()

| effect Spawn f, k -> suspend (continue k); run f

The current thread called spawn f:
we store the continuation k as ready to restart,
and we start to execute f.

32

The scheduler

let rec run (f: unit -> unit) =

match f() with

| () -> restart ()

| effect Terminate, k -> discontinue k; restart ()

| effect Yield, k -> suspend (continue k); restart ()

| effect Spawn f, k -> suspend (continue k); run f

Alternative:

| effect Spawn f, k ->

suspend (fun () -> run f); continue k ()

In both cases, we must do run f, and not just f(),
so that the effects of f() are handled.

32

Example of use

A client of the library, written in direct style:

let task name n =

for i = 1 to n do printf "%s%d " name i; yield() done

let _ =

run (fun () ->

spawn (fun () -> task "a" 6);

spawn (fun () -> task "b" 3);

task "c" 4)

Prints a1 b1 a2 c1 b2 a3 c2 b3 a4 c3 a5 c4 a6

33

Adding message-passing communication

new_channel : unit -> ’a channel

Create a new channel to pass values of type ’a.
recv: ’a channel -> ’a

Receive a message from the given channel.
send: ’a channel -> ’a -> unit

Send the given message on the given channel.

We choose to implement “rendez-vous” semantics (π-calculus):
send ch v blocks until another thread calls recv ch;
both threads restart;
recv ch returns value v.

34

Structure of a communication channel

A channel = two queues,
one for threads blocked on a send waiting for a matching recv,
the other for threads blocked on a recv waiting for a send.

type ’a channel = {

senders: (’a * (unit, unit) continuation) Queue.t;

receivers: (’a, unit) continuation Queue.t

}

let new_channel () =

{ senders = Queue.create(); receivers = Queue.create() }

At any time, at least one of the two queues is empty.

35

Message-sending operations

As always, whenever we have operations that cannot be
implemented locally and must be handled by the scheduler, we
turn these operators into effects.

type _ eff +=

| Send : ’a channel * ’a -> unit eff

| Recv : ’a channel -> ’a eff

let send ch v = perform (Send(ch, v))

let recv ch = perform (Recv ch)

36

The scheduler extended with message passing

let rec run (f: unit -> unit) =

match f () with

...

| effect Send(ch, v), k ->

begin match Queue.take_opt ch.receivers with

| Some rc -> suspend (continue k); continue rc v

| None -> Queue.add (v, k) ch.senders; restart()

end

| effect Recv ch, k ->

begin match Queue.take_opt ch.senders with

| Some(v, sn) -> suspend (continue sn); continue k v

| None -> Queue.add k ch.receivers; restart()

end

37

Semantics of effect handlers

A small functional languages with effects and handlers

Expressions:
e ::= cst | x | λx. e | e1 e2

| perform e perform effect e
| handle e with eret, eeff handle effects in e

perform e stops evaluation and branches to the nearest
enclosing handle.

38

A small functional languages with effects and handlers

Expressions:
e ::= cst | x | λx. e | e1 e2

| perform e perform effect e
| handle e with eret, eeff handle effects in e

handle e with eret, eeff evaluates the body e.
If e evaluates to value v without performing effects,
we apply eret to v.
If e performs effect f , we apply eeff to (f , k)
where f is the value of the effect
and k the continuation of the perform.

38

Encoding match. . .with effect

Adding extensible algebraic datatypes and pattern-matching,
we can encode

match e with

| x→ e0

| effect F1 x1, k→ e1
...
| effect Fn xn, k→ en

as
handle e with

(λx. e0),

(λ(f , k). match f with

| F1 x1 → e1 | . . . | Fn xn → en

| _→ k (perform f))

39

Reduction semantics

(Very close to the reduction semantics for exceptions here .)

Two head-reduction rules forhandle:

handle v with e1, e2
ε→ e1 v

handle D[perform v] with e1, e2
ε→ e2 (v, (λv′.D[v′]))

Here, D is a context with no handle enclosing the hole:

Reduction contexts:
C ::= [] | C e | v C | perform C | handle C with e1, e2

Effect propagation contexts:
D ::= [] | D e | v D | perform D

40

Deep handlers, shallow handlers

handle D[perform v] with e1, e2
ε→ e2 (v, λv′.D[v′]))

The rule above implements shallow handling: the handler is no
longer active when the continuation D is restarted.

Deep handling is obtained by reinstalling the handler around the
continuation D:

handle D[perform v] with e1, e2
ε→ e2 (v, λv′. handle D[v′] with e1, e2)

41

CPS transformation for delimited continuations

(M. Materzok, D. Biernacki, Subtyping delimited continuations, 2011.)

For undelimited continuations (callcc), a CPS-transformed term
takes a continuation k as argument, and ensures that

C(e) k ∗→ k cst if e ∗→ cst

For delimited continuations, a CPS-transformed term takes n + 1
continuations k0, . . . , kn as arguments,
where n is the number of enclosing delimiters,
and each ki is the continuation up to the next delimiter.

C(e) k0 k1 . . . kn
∗→ k0 cst k1 . . . kn if e ∗→ cst

42

CPS transformation for the pure subset of the language

C(cst) = λk. k cst

C(x) = λk. k x

C(λx. e) = λk. k (λx. C(e))
C(e1 e2) = λk. C(e1) (λv1. C(e2) (λv2. v1 v2 k))

Same definitions as for the usual CBV-value CPS transformation.
These definitions remain correct when C(e) is applied to n
continuations, e.g.

C(cst) k0 k1 . . . kn = (λk. k cst) k0 k1 . . . kn → k0 cst k1 . . . kn

43

CPS transformation for delimited continuations

We formalize the operators shift0 and reset0

(O. Danvy and A. Filinksi, 1989).

A delimiter adds a trivial continuation at the head of the list:

C(delim e) = C(e) (λx.λk. k x)

so that, in the case where e ∗→ cst,

C(delim e) k0 k1 . . . kn = C(e) (λx.λk. k x) k0 . . . kn
∗→ (λx.λk. k x) cst k0 . . . kn

→ k0 cst k1 . . . kn

44

CPS transformation for delimited continuations

Symmetrically, the capture operator reifies the first continuation
to a value, and removes it from the list:

C(capture (λk.e)) = λk. C(e)

so that

C(capture (λk. e)) k0 k1 . . . kn = C(e)[k← k0] k1 . . . kn

The evaluation of e continues with k1, the continuation “after” the
nearest delimiter.

The continuation up to this delimiter, k0, is captured as the k
parameter to e.

45

CPS transformation for effect handlers

(D. Hillerström, S. Lindley, R. Atkey, Effect handlers via generalised
continuations, 2020.)

The previous approach + the “double-barreled” approach:
a CPS-transformed term takes 2n + 2 continuations as arguments,
with n = number of enclosing effect handlers.

C(e) k0 h0 k1 h1 . . . kn hn

The k0, . . . kn delimited continuations are invoked to return
values as results.

The h0, . . . hn delimited continuations are invoked to perform
effects.

46

CPS transformation for effects

For the pure subset of the language: we apply the usual CBV CPS
transformation rules.

To perform an effect:

C(perform e) = C(e) (λf . λk. λh. h (f , λx. k x h))

e is evaluated to an effect value f .

We capture the normal continuation k, as well as the effect
continuation h, and we invoke h, giving it f as the effect value and
k′ = λx. k x h as the way to resume after perform.

(The application of k to h implements deep handling!)

47

CPS transformation for effects

An effect handler adds a normal continuation and an effect
continuation:

C(handle e with e1, e2) = C(e) (λv.λh.C(e1) v) C(e2)

In the case where e ∗→ cst,

C(handle e with e1, e2) k0 h0 . . . kn hn

= C(e) (λv.λh.C(e1) v) C(e2) k0 h0 . . . kn hn
∗→ (λv.λh.C(e1) v) cst C(e2) k0 h0 . . . kn hn
∗→ C(e1) cst k0 h0 . . . kn hn

In the case where e performs effect f with continuation kf , the
continuation C(e2) is applied to (f , kf) and to the list k0 h0 . . .

48

Summary

Summary

Effect handlers provide:

• A control operator that supports programming in direct style
with delimited continuations.

• A presentation of delimited control as restartable
exceptions, more intuitive than the control operators viewed
earlier.

• A new programming style:
user code performs effects to invoke the services they need;
these services are realized by an enclosing handler.

49

References

References

The OCaml version used for the programming examples:
opam update && opam switch create 5.1.1+effect-syntax

A general introduction to effect handlers:

• Matija Pretnar: An Introduction to Algebraic Effects and Handlers,
ENTCS 319, 2015. https://doi.org/10.1016/j.entcs.2015.12.003

CPS transformations for effects:

• Daniel Hillerström, Sam Lindley, Robert Atkey: Effect Handlers via
Generalised Continuations, J. Funct. Program. 30, 2020.
https://doi.org/10.1017/S0956796820000040

The implementation of effects in OCaml version 5:

• KC Sivaramakrishnan, Stephen Dolan, Leo White, Tom Kelly, Sadiq Jaffer,
Anil Madhavapeddy: Retrofitting Effect Handlers onto OCaml, PLDI, 2021.
https://arxiv.org/abs/2104.00250

50

https://doi.org/10.1016/j.entcs.2015.12.003
https://doi.org/10.1017/S0956796820000040
https://arxiv.org/abs/2104.00250

	Exceptions
	Effects and effect handlers
	Implementing cooperative threads with effects and handlers
	Semantics of effect handlers
	Summary
	References

